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ABSTRACT

The growing technology has shifted the business focus from manual to automated ways.
This fact increased the development of software applications in every field of life. However,
there are growing cyber threats to the applications by malicious users and attackers. The
developers of software applications have to handle the vulnerabilities in source code during
the development and penetration testers have to identify threats during or after deployment.
A large number of tools exist for assessing threats and vulnerabilities in web applications.
However, the selection of appropriate tools for code analysis and vulnerability detection
remains a big challenge for software developers and penetration testers.

This research initially investigates different types of vulnerabilities and attacks that exist
in software applications. Based on the requirements, this research proposes a mathematical
representation using Tensor that considers different features of web applications, security
tools, and deployment infrastructure.

The dataset is prepared by extracting the needed features manually from open-source
web applications, popular security tools in the domain, and infrastructure modes, then used
to train five different machine learning classifiers. Feature optimization is applied to the
dataset to reduce the number of features while achieving higher prediction accuracy values.
Random Forest (RF), Decision Tree (DT), Support vector machines (SVM), and Naive
Bayes (NB) classifiers provided the highest accuracy values. The trained models are used
to predict suitable tools for randomly selected open-source web applications. This research
found that RF achieved 97% and DT showed 93% prediction accuracy, while SVM 89% and
NB achieved 86% prediction accuracy. The selected tools are further validated manually
and found the same suitable security tool. The results of the study are promising and

provide a strong foundation for cyber security tools recommender systems.
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Chapter 1

Introduction

1.1 Opverview

The massive growth in the evolution of web applications inherently guides
the consideration of security factors related to these applications. Testing
web applications is essential to guarantee security, identify weaknesses, and
ensure that the application performs as expected (Spadini, Palomba, Zaid-
man, Bruntink, & Bacchelli, 2018). Application testing is a vital and expen-
sive activity in the Software Development Life Cycle (SDLC). Furthermore,
insufficient application testing usually has considerable risks and outcomes
(Thota, Shajin, Rajesh, et al., 2020). The application testing persists through
the SDLC, unlike when the testing is performed at the end of application
development. Moreover, the testing in the development of an application is
shown in figure 1.1.

Enterprise applications often suffer from frequent flaws at design and
implementation levels that fail to merge security throughout the develop-
ment procedure. Unfortunately, a late life-cycle penetration testing discloses
problems too late, for both time and budget that hardly restrain the possibil-
ities for remedy. On the other hand, not fixing bugs and flows in this stage
1s costly.

Coding and programming are significant phases in SDLC; if there is
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Figure 1.1: Security Throughout the SDLC (PCIDSS, 2022)

any weakness in the web application, attacks can happen. Nevertheless, un-
derstanding such vulnerabilities is challenging due to a lack of knowledge
regarding the appropriate vulnerability assessment tools. Moreover, there
is a long list of tools currently available that can identify these vulnerabil-
ities. This thesis focuses on the top 10 vulnerabilities listed in Open Web
Application Security (OWASP-SAST, 2022).

In addition, the tools that are used to detect these vulnerabilities will also
be identified; based on input parameters from application developers, such
as known vulnerabilities, programming language, the operating system of
the web application, deployment infrastructure settings, appropriate vulner-
ability assessment, and penetration testing tools will be provided based on a
proposed recommendation system.

The recommender system aims to provide the software developer or pen-
etration tester with the best suitable security assessment tool in a given sce-
nario. When the developer uses the same tools that the penetration tester use,
it will make his developed web application more secure; however, when ap-
plying penetration testing while an application is in development and before
launching, it may reveal critical vulnerabilities that need to be fixed so that

the application can be released free of vulnerabilities (Neil Daswani, 2021).




1.2 Research Problem

Application development is a complex and time-consuming activity. There-
fore, testing the web application during programming requires extra time
and effort. This assessment is essential because, increasingly, people depend
on online services such as e-commerce, logistics, communication, banking,
and many other areas. Data reveals enormous financial losses due to cyber-
attacks; statistics of these losses are shown in Table 1.1.

The description of these losses indicates the need for handling software
vulnerabilities at the code level. However, there are many tools to find vul-
nerabilities targeting web applications at the code level. A list of vulnerabil-
ity scanning tools is provided on (OWASP, 2022). OWASP project reports
more than 85 Dynamic Application Security Testing (DAST) tools as well as
109 Static Application Security Testing (SAST) tools. However, SAST and
DAST tools cannot be specified without the knowledge of the programming
language for the particular application development, where the web appli-
cation has to be deployed for the web server, the operating system where
the web server is hosted, and the physical Information and Communication
Technologies (ICT) infrastructure is available for deployment.

The data on ICT infrastructure is required because it presents the in-
formation needed for the availability of firewalls, encrypters, Intrusion De-
tection Systems (IDS), and Intrusion Prevention Systems (IPS). This infor-
mation helps application developers concentrate more on coding than on
particular security scenarios. Due to essential factors in choosing the right
vulnerability assessment tool, it is necessary to determine the most accurate
tool that helps programmers test their web applications. The application
developers are doubtful about selecting these tools due to their vast num-
ber and similar functionalities. On the other hand, developers have to focus
more on productivity than security. As a result, many developers neglect

security to provide the required application at the project time, resulting in
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more vulnerable web applications being exposed to severe attacks. Further-
more, improving the safety of web applications demands providing the right
testing tools for developers to test their web applications during develop-
ment and after the release. These issues faced by the application developer
signify the need for an automated way that provides an appropriate security
assessment tool to the developer with accuracy values. This tool will take
input parameters from the developer and recommend a suitable tool. Thus,

the research question in the thesis can be formulated as follows:

* RQ1. What is the most accurate and suitable tool to test the web

application code in the given programming language?

Table 1.1: Financial Losses (in USD million) with Location (Aldasoro et al., 2022)

Asia Africa Americas Europe Oceania Total

Frequency 3739 345 102459 7627 1024 115415
Total losses 4079.95 1793.37 28988.08 4299.89 362.41 39523.82
Mean loss 19.43 99.63 2.06 6.29 4.53 2.62

Std. Dev. of loss  89.34  399.53 47.41 44.36 19.64 79.97

1.3 Research Objectives

Information is one of the significant assets in today’s industrial applications.
This information is delivered through web applications to the stakeholders
(Aliero, Qureshi, Pasha, Ahmad, & Jeon, 2020). Nevertheless, attackers
desire to acquire non-legitimate credentials to the data by manipulating vul-
nerabilities in the application’s source code.

The attacks on web applications are increasing day by day. Although as-
suring the security of web applications is similar to software development,

static analysis of the source code and penetration testing are fundamental




approaches. However, selecting an appropriate tool that detects the vulner-
abilities in the source code is a complex process. This challenge evolves
manifold in the presence of a large number of open-source and proprietary
tools. Also, different tools can give different results when scanned on the
same target, so it is essential to define the most accurate tool to be used in
each penetration testing method.

To develop robust web applications against cyber attacks, this research
aims to develop a recommendation system framework that provides infor-
mation about a vulnerability assessment and the penetration testing tool
based on input values. This framework is based on an n — dimensional
matrix of attributes where » represents a feature such as vulnerability, op-
erating system, ICT infrastructure, web server, etc. This framework will be
evaluated using machine learning-based implementation where various clas-
sifiers will be applied to the input dataset and deliver the accuracy values as
output; results acquired from machine learning classifiers will be validated
via penetration testing of available open-source web applications.

Overall, this recommendation system will assist application developers
in testing the web application during the coding stage, and after the devel-
opment, this system will allow the penetration tester to accomplish different
types of attacks knowing the vulnerabilities recognized through the vulner-
ability assessment tool. This effort will help the developer minimize the

developing time and ensure the web application’s security attributes.

1.4 Contribution to the Field

The contribution of this thesis is to design a recommendation system with a
machine learning model for selecting a suitable security penetration testing
tool for the web application developer. In the web application penetration

testing field, the thesis assembles the following key contributions:




* To help the developer in selecting the best security assessment tool
from many available tools on the Internet to perform the security test-
ing on the web application. A recommendation system model is in-
troduced to help select the most suitable tool for testing the developed

web application.

» The dataset was prepared by the researcher by extracting real features

from open-source web applications and penetration testing tools.

* The mathematical representation is evaluated using five different clas-

sifiers for given metrics.

 This model is also validated by manual testing for the selected open-
source web applications which proved the effectiveness of the tool

selection by the recommendation system.

1.5 Thesis Outline

As a summary of this chapter, The thesis is addressed as follows:

* Chapter 1 Introduction: it delivers the research background, the ob-

jectives specified for the research, and the research question.

» Chapter 2 Literature Review: it provides details of related definitions
of code security, static analysis, penetration testing, vulnerabilities,
and attacks. It also includes statics on various vulnerabilities and
attacks during the last few years. Reviewing existing vulnerability
assessment and penetration testing tools is also part of the literature
review. Moreover, this chapter aims to provide a background on the
field of knowledge and the works done in previous studies and the

importance of the research question.




* Chapter 3 Research Methodology: This chapter discusses different
parallel research methodologies and selects suitable methodologies
for current research. This chapter provides the methodology layout

adopted in the following chapters.

* Chapter 4 Framework For Recommendation System: this is an im-
portant chapter that represents the input parameters of the proposed
framework, the processes, and the results. The metrics used in the
research will be defined and justified. Finally, the implementation of
the framework will be provided, followed by validation via penetra-

tion testing of the web applications.

* Chapter 5 Results and Discussion: This chapter provides the results
and discusses the research findings, research limitations, and future

work will also be identified in this chapter.




Chapter 2

Literature Review

The security life cycle starts in parallel with SDLC (PCIDSS, 2022).
Generally, security is ignored and thought to be ensured through testing
after the deployment of the applications. Late testing may result in the
identification of defects and bugs very late and impossible to r evert. Dif-
ferent security testing processes are adopted at different stages of software
development. The research work focuses on risk analysis, source code secu-
rity analysis, and penetration testing during and after software development.

Different related definitions of tools and processes will also be provided.

2.1 Risk Analysis

Different types of risks are associated with the software. These risks are re-
lated to the performance, security, quality, and usability of the application to
be developed. These are non-functional requirements and are referred to as
implicit constraints imposed by the customer. Later the identification of risk

in SDLC, higher the chances of failure of the application. Different tools,




techniques, frameworks, and approaches have been proposed in the litera-
ture to cope with certain types of risk. A framework for quantitative risk
assessment for web applications has been proposed in (De Gusmdo, Silva,
Poleto, e Silva, & Costa, 2018). The research shows that quantitative mod-
els are not sufficient to detect and avoid security risks in web applications.
The results are drawn from the analytical model.

A requirement diversity and traceability mechanism for risk assessment
in complex software development for medical devices have been proposed
in (Regan, Mc Caffery, Mc Daid, & Flood, 2013). A risk control module
is introduced at the requirement specification phase during the software de-
velopment process. This model follows the standards define by regulatory
bodies. A methodology based on the privacy-by-design principle is pro-
posed in (Notario et al., 2015). The methodology operates throughout the
SDLC with a particular focus on the requirement analysis phase. To provide
a risk-based testing taxonomy framework to understand, reorganize, and
compare risk testing methods to help select and tailor specific purposes, has
been mentioned in (Dahiya, Solanki, & Dhankhar, 2020). This framework
is generic and can be applied at any stage of SDLC. The major components

of the framework are risk (drivers, assessment, and test process).

2.2 Static Analysis

The source code is a common artifact in all software projects. Code review
from the perspective of security reasons and the architectural risk analysis is
essentially a software best practice (Tahaei, Vaniea, Beznosov, & Wolters,
2021; Nunes et al., 2018). Coding mistakes are common among all develop-
ers, Most of the time, the compiler identifies the error and the programmer
corrects the error. The development progress in the converse of most of the

security vulnerabilities that exist in the code. The cost of recovery increases




with an increase in delay in the detection of these vulnerabilities.

The role of programming language is vital and the languages are de-
signed to serve specific purposes. For example, the major focus of the de-
sign of languages such as C or C++ is efficiency and portability while it is
little or no handling of run-time errors (Rassokhin, 2020). An example of
run time error is the bound checks of arrays in C and C++. Null pointer ex-
ception is also a common problem. To avoid these errors, programmers are
required to place checks in code which is labor intensive and still not 100%
safe. A robust programming language ensures that checks by a programmer
are not required and error handling is done by the language itself.

Static analysis means automated analysis of run-time effects of code
without running it (Siavvas, Gelenbe, Kehagias, & Tzovaras, 2018). These
properties result in early ending or weak results of the application. These
possessions do not contain address syntax errors or straightforward type er-
rors. Static analysis can be used to inspect why program performance is
aborted due to unexpected run time errors. The static analysis does not
check for the functional requirements defined in the software requirement
specification (SRS) document. Static analysis also varies from dynamic
analysis, involves examining the application based on its execution, and
contains properties such as testing, monitoring the performance, errors iso-
lation, and debugging. Although the static analysis does not certify the
lack of run-time errors; moreover, it can lower the requirement for test-
ing/detecting errors that, in practice, cannot be discovered by testing. There-
fore, static analysis cannot replace software testing. A variety of tools exist
that perform Static Analysis without running the application. Theoretically,
the source code or binaries of an application could be examined. However,
not all tools can decode the binaries of a software program.

The static analysis of code is recommended to be part of the software

development process and helps the developers to perform control flow and
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data flow analysis (Sherman & Dwyer, 2018), pattern matching, and other

bug identification.

2.3 Penetration Testing

Permission of access to resources is the main difference between the attacker
and the penetration tester. The penetration tester works with the permission
of the owner of resources and is responsible for providing the report with
the major goal of increasing the security of the application.

”Penetration testing is the process of discovering and exploiting the vul-
nerability found in the tested application in an authorized and systematic
method.” (Khera, Kumar, Garg, et al., 2019).

“Penetration test is the authorized, scheduled, and systematic process of
using known vulnerabilities in an attempt to perform an intrusion into host,
network, or application resources. The penetration test can be conducted
on internal (a building access or host security system) or external (the com-
pany connected to the Internet) resources. It normally consists of using an
automated or manual tool-set to test company resources.” (Weidman, 2014).

Penetration testing is different from vulnerability scanning. The differ-
ences are shown in Table 2.3.

The penetration testing is conducted after the release of the application
with the consent of the owner of the application. The penetration tester or

ethical hacker is trustworthy to report the activity to the application owner.

2.3.1 Types of Penetration Testing

The researcher in (Weidman, 2014), addressed that the main types of pene-

tration testing are:

* Physical Penetration Testing

11




Table 2.1: Vulnerability Scan Versus Penetration Test

Vulnerability Scan

Penetration Test

Purpose Identify, rank, and report the vul- Identify ways to exploit vulnerabil-
nerabilities in an application that, ities to defeat the security of the ap-
if exploited, may result in compro- plication components.
mising the application.

When At a significant release of the appli- annually and upon significant
cation or at least quarterly change

How Automated tools with the support of A manual process which may in-
manual verification and identifica- clude the support of other auto-
tion of issues mated tools and result in a compre-

hensive report.

Report  Probable risks for available vulner- Each confirmed vulnerability is ex-
abilities are classified according to plained, as well as each potential
CVSS/NVD standards. External problem found. Furthermore, any
scans are conducted outside the or- detailed threats that vulnerability
ganization, while internal scans are may pose, including typical tech-
performed internally. niques, how and to what the scope

may be manipulated.

Duration Moderately, it takes a short period, Engagements can take weeks, rely-

ordinarily several minutes per host.

ing on the test’s scope and the tested

environment’s size.

* Social Engineering Testing
* Web Application Penetration Testing

» Network Penetration Testing

2.3.2 Penetration Testing Approaches

There are different approaches to penetration testing such as white box,

black box, and grey box. In white-box testing, the client provides complete

12




information about code, networks, and protocols. In black-box testing, no
information is provided to the penetration tester. In grey-box testing, the
tester may be provided with partial details. A detailed review of the pene-

tration testing terminologies and guidelines can be found at (Baloch, 2017).

 Black box testing is testing the application without any given knowl-
edge about it in any way; it is similar to what the real hacker does

when he tries to exploit an application (Khera et al., 2019).

» The white box testing technique covers every design element and
checks the related code with every possible way of execution; the
tester knows everything about the application usually, it is done for
unit testing by the developers (Mansour & Houri, 2017). Moreover,

This method demands an understanding of the programming language.

* Grey box testing is when the tester has a piece of partial information
about the network that will be tested, considered a combination of
both black and white testing. Furthermore, these tools can scan both
the white box / black box environments automatically. In addition, the
code review in black box testing only scans the application behavior

for anomaly detection.

Recent studies show black-box testing tools can deliver security out-
comes at a certain status and specified qualifications, e.g., detecting Cross-
Site Scripting (XSS) and processing a few components such as (flash, Java
Applet) and identifying typical application defects (Khamdamovich & Aziz,
2021; X. Li & Xue, 2011). In contrast, another study added that black-box
testing is a complex process (Tripp, Weisman, & Guy, 2013).

The authors in (Seng, Ithnin, & Mohd Said, 2018) conducted a test ex-
amining a vulnerable web application for both scanners, and the test pro-

vided significant results showing the performance between black and white
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box scanners. In addition, white-box scanners’ code visibility delivered bet-
ter coverage than black-box scanners.

To explain the white-box and black-box tool’s performance, (Seng et al.,
2018), an experiment is conducted on a vulnerable web application. As a
result, white-box tools achieve better test outcomes because of code visi-
bility. Hence, black-box tools deliver false negatives. However, white-box

tools are tolerant of false positives.

2.4 Common Vulnerabilities in Web Applications

More and more business is trending towards Information Technology (IT),
and the security of web applications is becoming more and more important.
Many web-based solutions are being utilized in operating sensitive financial
data and medical devices. The downtime of these applications can cause
millions of dollars in damage, so it is important to protect these applications
from illegal attempts from malicious users.

The web applications follow a client-server model for message passing
and input handling. The client-side input is handled by a server-side pro-
gram or database. Although the libraries offered by different languages pro-
vide built-in security, it is possible to make logical programming errors that
lead to vulnerabilities such as SQL injections (Balasundaram & Ramaraj,
2012) and cross-site scripting attacks (Gupta & Gupta, 2017).

2.4.1 Causes of Vulnerabilities

The most common problem identified in web applications is unchecked in-
put which causes attacks by malicious users. The attacker may achieve one

or two goals by exploiting unchecked inputs.
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2.41.1 Inject malicious data into Web applications
This can be done by using the following common methods:

* URL manipulation: temper the URL by passing fabricated input pa-

rameters to get desired response.

* Parameter tempering: pass specially designed input values to the HTML
forms provided by the Web applications.

* Hidden field manipulation: set some hidden field values to achieve

desired results.

 Cookie poisoning: the data in cookies at the client side is manipulated

by injecting malicious code and sent to the server.

e HTTP header tempering: manipulate parts of the HTTP header sent

to the application.

2.4.1.2 Manipulate applications using malicious data
Common methods used are:

* SQL injection: modify the SQL queries and send the query to the

server to get desired results.
* Command injection: exploit user inputs to execute shell commands.

» HTTP response splitting: exploits the behavior of the user for a given

input and expected output or Web cache poisoning attack.

* Cross-site scripting attack: due to unverified programming mistakes,

the malicious scripts are injected into the web application.

» Path traversal: check the user inputs and exploit to access the files

from the Web server.
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2.5 OWASP Top 10 Vulnerabilities

The OWASP Project is the best starting point for testing web application
security. As mentioned in (J. Li, 2020), the well-known ten risk-rated vul-
nerabilities are specified by the OWASP. It was updated in 2021. Table 2.2
shows the OWASP Top 10 vulnerabilities list in 2017. The names in the
latest list are altered to concentrate on the core cause rather than the symp-
tom. In a study (Qasaimeh, Shamlawi, & Khairallah, 2018), researchers
recognized that most scanners illustrate vulnerabilities to these categories:

Critical, High, Medium, Low, and Informational.

2.6 Web Applications Security Testing

To guarantee web applications’ security, they must be tested for exploitation
or any well-known vulnerabilities; a web application includes different data
at various levels. For example, the data delivered in web applications can
be from a personal user, such as private data, to extensive enterprises and
companies that carry significant portions of sensitive information, such as
critical infrastructure. Thus, security for web applications is vital. Static
analysis of source code and penetration testing of the deployed web appli-

cation is the most widely accepted practice to secure web applications.

2.6.1 Web Application Attacks

At the start of the World Wide Web (WWW) and the Internet, it only hosted
websites with static content. The web browser’s mechanism was designed
to reveal those static contents; in other words, they were a one-way data
stream from the server to the browser; if the websites were attacked, the
attacker would not get any sensitive data; because the details held on the

server are open for the public. However, nowadays, websites have devel-
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Table 2.2: OWASP Top 10 Vulnerabilities (OWASP-SAST, 2022)

Rank Vulnerability Rank Vulnerability Description
(2021) Name (2021) (2017) Name 2017
A01- Broken Access AOS5- Broken Access 94% of applications were tested for
2021 Control 2017 Control some form of broken access control.
A02- Cryptographic A03- Sensitive ~ Data Focus is on failures related to cryptog-
2021 Failure 2017 Exposure raphy which leads to data exposure or
compromising the application.
A03- Injection A01- Injection 94% of web applications were tested
2021 2017 for some types of injection.
A04- Insecure Design - (New) Risks related to design flaws
2021
A05- Security Miscon- A04- XML  External 90% of web applications were tested
2021 figuration 2017 Entities for misconfiguration
A06- Vulnerable and AOQ6- Using Com- It is the only category that does not
2021 Outdated Com- 2017 ponents with have any Common Vulnerability and
ponents Known Vulnera- Exposures (CVEs) mapped to the in-
bilities cluded CWEs
AQ7- Identification and A02- Broken Authenti- Includes CWEs that are more related
2021 Authentication 2017 cation to identification failures
Failures
A08- Software and - (NEW) Making assumptions related to soft-
2021 Data  Integrity ware updates, critical data, and CI/CD
Failures pipelines without verifying integrity.
A09- Security Logging A10- Insufficient Log- Can impact on visibility, incident
2021 and Monitoring 2017 ging and Moni- alerts, and forensics
Failures toring
A10- Server-Side - (NEW) The data shows a relatively low inci-
2021 Request Forgery dence rate with above average testing

coverage
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oped into powerful platforms; websites on the internet are real applications.
They are considered web applications that are highly operative and have
communication between users via the browser and the server. They sustain
trades, logins, and much more (Altayaran & Elmedany, 2021).

As the number of web applications grows, the attacks on those web ap-
plications also increase. In the era of COVID-19, the number of cyber-
attacks has increased tremendously. These attacks targeted thousands of
people working from home. Working from home has discovered levels of
cyber security threats and challenges by enterprises and individuals never
encountered before. Cybercriminals manipulate the chance to extend their
attacks and target users at all levels, from employees to critical infrastruc-
ture such as health care services. As a result, web applications witnessed a
rising number of threats and episodes.

Cyber-attacks increased by 600% by March 2020. companies and indi-
viduals faced challenges securing their data in a way never envisioned be-
fore (Lallie et al., 2021). In addition, attacks are extending significantly due
to the evolution of knowledge, technology, and the existence of weaknesses
and vulnerabilities in web applications as well as exploitation techniques.
As aresult, testing web applications is an essential and demanding mission
(Futcher & Von Solms, 2008).

The Data Breach Investigations Report (Verizon, 2022) collected and
analyzed in total over 914,547 incidents, 234,638 breaches, and 8.9 Ter-
aBytes (TBs) of cyber security data since 2018 (15 years). In addition, this
report mentioned that the top action vectors in incidents of data breaches are
hacking web applications more than 60%, as shown in figure 2.1.

According to a recent comprehensive analysis of the data induced from
testing, more than 15 million web application security in organizations through-
out 2021 by NTT Application Security (Staff, 2022); they found that 50%

of all web applications were vulnerable to at least one critical vulnerability.
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Figure 2.1: Top Action Vectors in Incidents and Breaches (Verizon, 2022)

In the Global Threat Analysis Report, (Radware, 2022), from 2020 to 2021,
malicious web application requests increased by 88%. The blocked secu-
rity violations by the 2017 OWASP Top 10 in 2021 are shown in figure 2.2,
where injection attacks are the highest web application security risks based
on the 2017 OWASP Top 10.

On the other hand, with Broken Access Control OWASP application se-
curity risk, more than 75% of web application attacks were characterized as
njection attacks and broken access control. Furthermore, banking, finance,
and SaaS providers are the most attacked enterprises in 2021, accounting for
more than 28% web application attacks. Retail and high-tech enterprises
rated third and fourth, each with nearly 12% of the web security occur-
rences observed by manufacturing (9%), government (6%), carriers (6%),
and transportation (5%), as represented in figure 2.2.

As a reaction to the comprehensive scope of attacks associated with the
pandemic, in 2020, the United Kingdom’s National Cyber Security Centre
(NCSC) and the United States Department of Homeland Security (DHS),
Cyber security, and Infrastructure Security Agency (CISA) issued a collab-
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Figure 2.2: Web Application Attacks per 2017 OWASP Top 10 Category (Verizon, 2022)

orative consultative on how cyber-criminals are manipulating the present
COVID-19 pandemic. These consultative documents examined malware,
phishing, and web application attacks. Moreover, organizations are hugely
challenged to develop suitable security measures for protection and response
(Lallicetal 2021 )

2.6.2 Web Application Testing Tools

Testing web application security is a large field that needs attention from
researchers because the community depends more and more on web appli-
cations. In addition, each testing tool is different in the kinds of attacks it
can perform, for example, port scanning, application detection, and known

vulnerability scanning (Suto, 2010).
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Studies done by (Vassallo et al., 2018) confirmed that working on open-
source software gives efficient results, such as RIPS (Re-Inforce PHP Secu-
rity) and OWASP WAP (Web Application Protection Project). In addition,
different methods are used to detect vulnerabilities, such as penetration test-
ing (Ibrahim & Kant, 2018; Setiawan & Setiyadi, 2018), and static and
dynamic code analysis (J. Li, 2020).

One of the best coding practices is using code review to detect vulner-
abilities from the beginning of programming the web application. The re-
searchers (Tripp et al., 2013) declared that the static code review analysis
approach is used to secure applications. However, the researcher deter-
mined many concerns associated with testing input data validation in a web
application because of the enormous number of payloads that can exploit
vulnerabilities; detecting precise inputs utilized as an attack vector can be
complicated and it is not easy to search for them manually. In (Apriani,
2019), the researcher indicates that the proper tools influence testing results
due to their performance, which will depend on the level of vulnerability of
the application, and the drawback of application penetration testing is that it

takes ample time to inspect the whole application.

2.7 Security Testing Frameworks and Solutions

Different security testing frameworks that exist for software applications
are discussed in the section. The results of a study show the trends of cyber
threats from the Year 2012 to 2018 (Kettani & Wainwright, 2019). The
frameworks proposed considered the threats described in Table 2.3.

A procedure for immediate impact and reversal testing is produced in
(Amalfitano, Fasolino, & Tramontana, 2011). This procedure stands on a
crawler that automatically assembles a benchmark of the application GUI

and gets test cases that can be automatically conducted. A model to detect
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Table 2.3: Annual Changes in Ranking of the Top fifteen threats (European Union Agency
For Network and Information Security) (Kettani & Wainwright, 2019)

Year 2018 2017 2016 2015 2014 2013 2012
Malware 1 1 1 1 1 2 2
Web-Based Attacks 2 2 2 2 2 1 1
Web Application Attacks 3 3 3 3 3 3 3
Phishing 4 4 6 8 7 9 7
Denial of Service 5 6 4 5 5 8 6
Spam 6 5 7 9 6 10 10
Botnets 7 8 5 4 4 5 5
Data Breaches 8 11 12 11 9 12
Insider Threat 9 9 9 7 11 14 -
Physical Manipulation/Damage/Theft 10 10 10 6 10 6 12
Information Leakage 11 13 14 13 12 13 14
Identity Theft 12 12 13 12 13 7 13
Cryptojacking 13 - - - - - -
Ransomware 14 7 8 14 15 11 9
Cyber Espionage 15 15 15 15 14 - -
Exploit Kits - 14 11 10 8 4 4

the conflicting behavior of different plugins and show different behaviors as
expected is developed in (Nguyen, Kistner, & Nguyen, 2014). The author
executed the test cases on many configurations and found that while plugin
exchanges exist, a significant quantity of sharing allows a variability-aware
implementation to rise to 250 configurations within seven minutes of run-
ning time.

A framework for testing single sign-on vulnerabilities in web applica-
tions has been proposed in (Zhou & Evans, 2014). The vulnerabilities asso-
ciated with single sign-on based on third-party APIs are evaluated on twenty
thousand top-ranked websites. The results show that over 20% of the web-

sites are found to be suffered from at least one vulnerability. Furthermore, a
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black-box security testing framework for web applications based on HTTP
protocol is proposed in (Aliero, Ghani, Qureshi, & Rohani, 2020). The pro-
posed tool that executes attacks depending on the attack surface, such as
HTTP requests referred to as Uniform Resource Identifiers (URIs), the web
applications take input that can have payloads for testing attack vectors;
such as buffer overflows, SQL injection, privilege escalation, and arbitrary
code execution. Besides, the tool can analyze the existence or absence of
vulnerabilities by considering HTTP responses from the web application.
One of the disadvantages of this study is that the black-box testing per-
formed at the end of the application development activity does not provide

an understanding of the internal working of the application.

2.7.1 Cyber-Attack Recommendation System

Researchers adopted different approaches for the selection of tools for cyber
assessment. A graph-based attack detection approach is used in (Polatidis,
Pimenidis, Pavlidis, Papastergiou, & Mouratidis, 2020). The graph shows
all possible paths that an attacker can adopt for launching an attack and gain-
ing unauthorized access to the cyber system. A recommendation system is
proposed for the detection of privilege escalation attacks. Howeyver, the ef-
fectiveness of this system is tested for privilege escalation attacks only. An-
other work emphasizes that the recommendation system cannot itself make
decisions (Gadepally et al., 2016). It rather has other actors that participate
in the decision-making process. This work is discussed in the context of data
collection from sensors. The system collects information and combines it
with domain knowledge, human intuitions, and goals. The recommender
model is derived from data collections, model updates, model exploitation,
and recommendations from other users or previous actions.

Smart contracts are used in blockchain technology that has the properties

of inherent cryptographically secured decentralized architecture, immutabil-
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ity, and user anonymity. However, these smart contracts have vulnerabilities
(J. S. Yadav, Yadav, & Sharma, 2022). The study presents twelve publicly
available security analysis tools and vulnerabilities present in smart con-
tracts. The recommender system adopts a two-step approach and uses the
method of continuous improvement for selecting the suitable tool.

A comprehensive study (Husdk & éermék, 2022) on the automated and
semi-automated incident handling and response recommendation systems
reveal that there does not exist a full-scale recommender system that guides
the user about the appropriate steps. Many of them aim at a particular prob-
lem.

To the best of our knowledge, this is the first work that did a general
recommendation system framework to select the best suitable pentesting

tool for web application vulnerabilities.

2.8 Problem Identification

This literature helped identify a diverse and vast range of vulnerabilities in
web applications. At the same time, many open-source and proprietary tools
exist for code scanning and penetration testing. Considering the implemen-
tation of security in parallel with software development, it becomes chal-
lenging for a software developer to select a suitable tool for code scanning
during software development. Considering the strict timeline and project
plan requirement, an automated recommender system for scanning tools is
necessary that assist software developers to find a suitable tool with the best

possible accuracy value.
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2.9 Summary

This chapter provides background information on vulnerabilities that ex-
ist in web applications. Different security testing methods are discussed,
including static analysis of source code and penetration testing. Statistics
about the top 10 vulnerabilities according to the OWASP project are pro-
vided. In the end, the research gap is identified, covering vulnerabilities,
existing security tools, and software developer needs in the form of a se-
curity testing recommender framework. The next chapter will provide the

methodology adopted to develop the framework.
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Chapter 3

Research Methodology

This chapter provides the research methodology adopted in this thesis. The
major focus is to provide results that are comprehensive and analytical. The
research process will define the ways to collect related data and its process-
ing. The research method used in the research to develop the framework
for the recommender system is provided. Moreover, the other different re-
search processes involved during the research are explained along with the

necessary components.

3.1 Framework Development Methodology

Development and implementation of a cyber security framework can be con-
sidered an art where there is no manual for testing the implementation of
interconnected systems and the cyber security expert has to rely on his ex-
perience. It is a science as well which requires the identification of faults

resulting from interconnected software and hardware components. The so-




cial aspects cannot be ignored where the actions of individuals are respon-
sible for major security issues. Detail of different approaches and actors is
provided in (Haley, Moffett, Laney, & Nuseibeh, 2006; Todorovié & Tri-
funovié¢, 2020; Whitman & Mattord, 2021).

The research methodology is derived from the literature review and ex-
perience in the practical field. Cyber Security Recommender System (CSRS)
Framework components are reviewed and updated from the literature. An
overarching view of the research methodology adopted to develop and eval-
uate the CSRS Framework is provided in figure 3.1. Different components

of the adopted research method are briefly explained as follows:

* Data Collection and Analysis: The data is collected from literature
including scholarly articles, books, white papers, and websites for
standards and guidelines. The focus is on cyber security vulnerabil-
ities, attacks, available tools, cyber security strategies, international
security standards, and security implementation frameworks. This

phase is covered in Chapter 2.

* Identify Research Gaps: The purpose of this phase is to identify
the research gap based on evidence from the literature. This phase
extracts common features and components necessary in the domain
including tools, inputs, and outputs. The process provides high-level

components in the framework rather than low-level technical details.

* Generalized Framework Components: the components to be used
in the framework are generalized, duplicates are removed and inputs
are identified. The research processes that will be involved are gener-

alized and validation criteria are established.

* Propose Recommendation System Framework: All the compo-

nents identified in the previous step are conceptually integrated to
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provide a generalized framework. The design of the framework is
based on traditional processing systems that take input, process it, and

generate output. The decision about the output is based on feedback.

¢ Validate Framework: one of the most important parts of frame-
work design is its validation (Sabillon, Serra-Ruiz, Cavaller, & Cano,
2017). The researcher will validate it by verifying the output through

real test bed implementation in real-life scenarios.

Data Collectl_on and Identify Research | _r Generalize Framework
Analysis Gap i Components

Propose Recommendation Validate Framework
System Framework ‘

Figure 3.1: Research Methodology

3.2 Research Process

The research work is initiated for answering the research question estab-
lished in chapter 1. A detailed review of different aspects involved in the
research is provided in Chapter 1.5. This review includes different vulner-
abilities that exist in the source code of web applications, tools to iden-
tify these vulnerabilities, and existing cyber security frameworks to address
these vulnerabilities. It is identified the process of selecting the proper tool
for security testing of the web application is time-consuming for the soft-
ware developer and it may not provide results with the desired accuracy.

Therefore, the design of a Cyber Security Recommender System (CSRS)
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framework is desired. Different steps that will be followed in the research

process are as follows (figure 3.2).

3.2.1 Select Open-Source Tools and Vulnerabilities

There exist a very large number of proprietary and open-source tools for
the security testing of a web application. For this work, security testing
refers to source code analysis and penetration testing of the deployed web
application. Also, the scope of security tools is limited to web applications
only. We consider only open-source tools available online. The selection
criteria of these tools are based on the number of positive reviews, number
of branches, and number of downloads. OWASP’s top 10 vulnerabilities are
considered for the process. Initially, the list of vulnerabilities mentioned in
2021 is used. The purpose of this phase is to extract different features from

tools and vulnerabilities that can be used in the research process.
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Different tools and vulnerabilities follow different naming conventions and

representations of a feature. The features extracted from the previous phase
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are generalized in this phase and added to data display formats such as CSV
files.

3.2.3 Define Metrics

For any framework, metrics of measurement are important. These metrics
are extracted from the properties of inputs to the CSRS framework. These
inputs are generally derived from the created dataset. The desired output
and units of measurement for the output are also defined. The metrics of

measure are necessary for the evaluation and comparison of results.

3.2.4 Mathematical Representation

The proposed Cyber Security Recommendation System (CSRS) framework
is based on different features of security assessment tools, ICT infrastructure
and the web applications to be tested. These features are integrated using
mathematical notations and concepts. The combination of features is used to
calculate the accumulative weights of the tool to be selected. The selected
security assessment tool is validated using machine learning classification

and validated through practical examples (Todorovié & Trifunovié, 2020).

3.2.5 Apply Machine Learning Classification

The dataset is prepared in section 3.2.2. is classified using different machine
learning classifiers such as K-Nearest Neighbor (KNN), Convolutional Neu-
ral Network (CNN), Support Vector Machine (SVM), Random Forest (RF),
and Decision Tree (DT) Classifier. These classifiers train a model based
on the given dataset and test the performance of the trained model with new
data through different metrics of measurement. The metrics of measurement

are provided in 3.2.3. A detail of these classifiers is provided in (Kilincer,
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Ertam, & Sengur, 2021). The machine learning algorithms is explained as

the following:

3.2.5.1 Supervised learning

In supervised machine learning algorithms, the prediction models are built
on given input data sets and produce output in the form of discrete val-
ues (Garcia, Garcia, Villasenor-Pineda, & Mendoza-Montoya, 2021). These
models are used for classification tasks for binary labeled data. These ma-

chine learning algorithms are known as supervised learning.

* Naive Bayes The Naive Bayes classifier is based on the Bayes theo-
rem and is mainly used for text categorization. The probability of an

attribute x being in class c is calculated through a posterior probability
of p(c/x).

 Support Vector Machine (SVM) SMYV classifier is used for the super-
vised machine learning process and is suitable for training and test-
ing the data for classification and regression problems. An imaginary
hyper-plane is created in multidimensional space and then data is clas-
sified into different classes to minimize errors. The larger number of

planes, the better will be the classification.

* Decision Tree It is also a non-parametric, supervised machine learn-
ing method for classification and regression analysis. The classifi-
cation is a two-step process comprising learning and prediction. It

works on continuous and discrete variables.

* Random Forest Random forest is a supervised machine learning al-
gorithm and is mainly based on the regression analysis technique. It
divides the whole dataset into multiple decision trees where each tree

selects a class based on regression analysis. The main steps for the

32




random forest are, to select the random sample from the dataset and
construct a decision tree to get a prediction from each tree. Perform a
vote for the prediction tree and select the final prediction based on the

most vote.

¢ K-Nearest Neighbor (KNN)

KNN classification algorithm also applies to supervised machine learn-
ing data and is used in cases with data labeled discretely and continu-
ously. KNN creates labels by calculating the similarity between input
data and training instances to predict the label. Mainly the KNN al-
gorithm finds the closest neighbor based on distance and the class is

selected based on the voting mechanism.

3.2.5.2 Unsupervised Learning

In unsupervised learning, the data is automatically segmented into groups
called clusters (Garcia et al., 2021). The main idea behind clustering is to
group the elements with similar properties and place the other elements in
another group having similar properties. The clusters could be disjoint or
overlapping. It could be hierarchical or exhaustive. A member of a clus-
ter joins the cluster based on a probabilistic or deterministic approach. For
numeric data, proximity measures in multidimensional space based on Eu-
clidean, Manhattan, or Minkoski are used. For non-numeric variables, mea-

sures such as binary, nominal, or non-linear scalars are used.

3.2.5.3 Reinforcement Learning

Reinforcement learning is based on learning from interaction with the en-
vironment (Garcia et al., 2021). It tells us the consequences of our actions
that could be used to achieve goals. Reinforcement learning can be defined

as a technique that guides how to behave in an environment based on inter-
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actions. The objective of reinforcement learning is to apply state to action
for maximizing performance. For achieving rewards there could be many
states. RL follows a trial and error process; there are delayed rewards, and

there is a balanced between exploration and exploitation.

3.2.6 Results Validation

Machine learning classifiers provide a list of selected security assessment
tools with certain accuracy values. These results require validation which
is achieved by applying static analysis or penetration testing using the tools
with the highest recommendation. The achieved results are cross-checked
with the results of ML classifiers. If the results are comparable i.e. within an
acceptable range then the tool is selected else the parameters of the classi-
fiers are tuned and the classification process (Section 3.2.5) is applied again
to get better output results.

It is important to note that the selected ML classifiers are trained with
a limited number of records consisting of properties of security assessment
tools, web applications, and infrastructure-related properties. In every itera-
tion, the results are refined by changing the combination of input parameters
for refining the output values of trained models. In this way, results with the

best possible values are tried to achieve.

3.3 Research Techniques

3.3.1 Data Collection

Scholarly databases are the main source of research data available in the

form of articles. The objective of data collection is as follows:

* Literature review: It consists of different scholarly articles available
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in different digital libraries (IEEE Xplor, ACM, Springer, Science Di-
rect, and many others). Along with this, data related to tools, vulnera-
bilities, attacks, and defense techniques will be found in general web

search engines.

« Implementation: The tools related to security testing and open-source

web applications will be downloaded from the Internet

3.3.2 Analysis Techniques

The analysis will be done by collecting data related to open-source web
applications and security assessment tools. The parameters will be extracted
from these web applications and the tools, and then used to train the machine
learning model. The testing web application properties will be fed into the
classifier and the recommendation of the tool by the classifier is validated

through either source code analysis or penetration testing.

3.3.3 Validation

The researchers will generate the results at different stages of the research
process to validate the system (figure 3.2). The processed data will be ana-
lyzed through the numerical method and statistical analysis. Bugs and vul-
nerabilities reported in web applications by different security tools will be
cross-checked for validity and then made part of the training dataset. The
output of the classifiers is reproduced using different parameter values. The
objective is to reproduce the results which can be validated. These results
will provide a clear and valid answer to the research question about the se-

lection of security tools for software applications.
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3.4 Ethical Consideration

This study does not collect data through quantitative or qualitative methods
such as surveys, interviews, or focus group studies. The data is collected
from scholarly databases and websites. The issues related to the data such as
plagiarism and data confidentiality are identified earlier to prevent the prob-
lems that could occur later in the research process. However, it is important
to clarify that the research is to develop the tool recommendation system. A
prototype implementation of the proposed framework will be provided and
a commercial or proprietary implementation is beyond the scope of the re-
search. Therefore, there do not exist any legal constraints on the prototype
implementation. Moreover, only open-source tools will be considered for

testing and evaluating the proposed security testing framework.

3.5 Summary

This chapter provides a methodology for the development of a cyber security
framework for a recommendation system. All the phases of methodology
are explained. The research process is illustrated to provide an in-depth
picture of the flow of the process. Moreover, data collection, data analysis,

and validation techniques are provided.
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Chapter 4

Cyber Security Recommendation
System (CSRS) Framework

4.1 Introduction

The chapter introduces the Cyber Security Recommendation System (CSRS)
framework. Components of the framework will be identified and integrated
in a way to provide collective output. Before this, a mathematical represen-
tation of these components will be given to achieve an analytical output. The
model will provide the upper and lower bounds of the input parameters and
results. Data will be finalized for websites and s ecurity assessment tools.
This parameter data will be generalized to be used in programming tools.
The data will be analyzed using machine learning classifiers using Python
programming language. In the end, the results will be tested for source code

assessment or penetration testing using a suitable environment.




4.2 Feature Selection for CSRS Framework

The CSRS framework is based on the input of multiple features for the selec-
tion of appropriate cyber security assessment tools. Initially, the framework
is based on features of the cyber assessment tool, web applications, and ICT

infrastructure.

4.2.1 Cyber Assessment Tools Features

There is a long list of features that exist for security assessment tools that
could be a reason for the selection of a particular tool (Vu, Tippenhauer,
Chen, Nicol, & Kalbarczyk, 2014). These features include functionality, ex-
tensibility, sustainability, and portability (Rolddn-Molina, Almache-Cueva,
Silva-Rabaddo, Yevseyeva, & Basto-Fernandes, 2017). However, these are
generic features of a tool. In this study, the metrics related to a tool such
as cyber security metrics (confidentiality, integrity impact, etc.), standards
(CVE, CVSS, etc.), number of downloads, number of development branches,
rating, and number of academic citations. The features are described briefly

as follows:

* Operating Modes (OM): The modes of assessment that are sup-
ported by the tool. For example, some tools only provide installers
that install on the supported operating system. Some tools provide
deployable web applications and are accessible via web interface and
some tools provide command line support. The rating is, installer=1,

deploy-able web app = 2, command-line = 3.

 Test Type (TT): it refers to the type of testing provided by the tool. It
could be a black box, a white box, or both. The rating of this parame-
ter is black-box=1, white-box=2, and both =3.
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» Data Confidentiality (DC): it refers to the ability of the tool to check
the data confidentiality. The value is zero if DC is not checked else it

is 1.

* Integrity Impact (II): II can determine the impact if the integrity of
data is compromised and the vulnerabilities that can be exploited to
compromise data integrity. The value is zero if II is not checked and

1 if the tool provides a detailed impact of potential vulnerability.

» Standards (Std): The support of tool for Common Vulnerability
Scoring System (CVSS) or CVS scores. The CVSS score is a compu-
tation of base metrics that reflect how much risk a vulnerability poses
to network security. If one standard is followed, its rating is 1, and so

on.

e Number of Downloads(Down): For open-source tools, the number

of downloads is an indicator of the popularity of tools.

* Number of branches(Branch): it refers to the number of develop-

ment groups working on the source code.

« Rating (Rate): The rating of the tool given by different users is based
on different features provided by the tools. The rating is available on

the online source code repository of the application.

* Academic Citations (AC): The number of articles that cited the tool
in academic research. These citations can be collected from Google

Scholar for any given academic resource.

4.2.2 Web Application Features

Web application features play important role in the selection of security

analysis tools. The selection of a cyber assessment tool depends on the fea-
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ture of the web application and a few of these features are given as follows:

* Programming Language (PL): The programming language of the
web application in which the application is developed. It is one of the
constraints in the selection of security assessment tools. This is be-
cause if the cyber assessment tool does not support the programming
language of the under-test application, the decision based on other

features cannot be correct.
* Web Server (WS): The web server on which the application is hosted.

* Host Operating System (OS): The operating system on which the
web server is hosted. The tools provided within OS help to make the
hosted application more securable. OS runs different authorization
and authentication tasks that provide support to prevent unauthorized
access (D. Yadav, Gupta, Singh, Kumar, & Sharma, 2018).

Another list of features reported in OWASP Application Security Verifi-
cation Standard (ASVS) project (ASVS, 2016) is given as follows:

1. Architecture (Arc): There are three levels of architecture. In level 1,
components of the app are defined in the code but not implemented;
in level 2, architecture is defined and adheres to the code and in level

3, all design and code are integrated.

2. Authentication (Auth): The credentials of the user are secure during
~ communication. There is a further checklist of 33 points for placing
the rating in V1, V2, and V3.

3. Session Management (SM): The set of all controls governing state-

full interaction between a user and the web-based application.

4. Access Control (AC): The mechanism to permit access to only au-

thorized users.
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10.

11.

12.

Malicious Input Handling (MIH): Validate input coming from the

client or the environment before using it

Cryptography at rest (CRYPT): It deals with the handling of cryp-

tographic errors, suitable number generators, and secure access keys.

Error Handling/Logging (EHL): Proper error handling and logging
are provided in the application for the support of the administrator or

users of the application.

Data Protection (DP): Data protection is centered around three com-
ponents that are Confidentiality, Integrity, and Availability (CIA). In
the web application context, data protection is ensured by hardening

the server on which the web application is deployed.

Communications (COMM): It refers to applying Transport Layer
Security (TLS) when data is exchanged on the communication chan-
nel. One common approach to achieving communication security is

by applying strong ciphers.

HTTP Security Configuration (HSC): It refers to a customized con-
figuration of the application server instead of the default configura-

tion. Hardening of the application server is also required.

Malicious Controls (MC): It refers to the handling of malicious con-
trols in the code. These include time bombs, phone home to unautho-

rized destinations, back doors, and logic flaws.

Business Logic (BL): It means business logic flows are sequential
and in order. The conditions in the code such as transferring funds
continuously or adding millions of friends are checked and verified.
Check business logic to prevent spoofing, tampering, repudiation, in-

formation disclosure, and elevation of privilege attacks.
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13. Files and Resources (FR): It refers to the handling of untrusted data
securely, saving it with limited permission and not in the web root

directory.

14. Mobile (Mob): All the security controls are implemented on the mo-

bile client.

15. Web services (WS): The authorized web applications have session
management and authorization of all web services. It also requires in-

put validation and parameter verification for consuming web services.

16. Configuration (Conf): The application has up-to-date libraries, op-

erating platform(s) and secure configuration.

4.2.3 ICT Infrastructure Features

Generally, the web applications are hosted in data centers equipped with ICT
equipment to ensure cyber security (Hunter & Weiss, 2021). This equipment
includes but is not limited to firewalls, encrypters, an Intrusion Detection
System (IDS), Intrusion Prevention System (IPS), and domain controllers
for authentication and authorization of incoming requests. A brief descrip-
tion of basic hardware components installed/configured in a data center is

given as follows:

» Firewalls: These are devices that pass network traffic following the
rules defined in the device. These devices serve as filters to stop un-

desired communication (Sabur, 2018).

* Encrypters: These are hardware devices that encryptdecrypt all the
incoming or outgoing traffic from a data center. The cryptography
algorithms implemented in these device work based on publicprivate
key or symmetric keys mechanism (Zhang, Yu, Ramani, Afanasyey,
& Zhang, 2018).
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* Intrusion Detection System (IDS): IDS systems have the general
purpose of detecting unauthorized access to the system. These devices
can be used with many features like signature-based IDS, Anomaly-
based IDS, Host-Based IDS, Network-based IDS, Stack Based IDS,
and so on. IDS and IPS are useful against cross-site scripting (XSS)
attacks (Chen, Nshimiyimana, Damarjati, & Chang, 2021).

* Domain Controllers: A domain controller is a server that responds
to authentication requests and verifies users on computer networks.
For web applications that authenticate via domain controller, rely on

tested authentication mechanism (Al-Anezi, 2019).

4.3 Mathematical Representation

The mathematical representation provides a high-level representation of dif-
ferent variables and the way they are integrated into a system. The mathe-
matical representation of a cyber security recommendation system describes
different input features and the way that are combined to generate the de-
sired output. A detailed description of the mathematical representation is

given as follows:

4.3.1 Parameter Generalization

Parameter generalization is the process to describe the existing features in
a generic form. This process is important for developing a generic mathe-
matical description of the proposed solution. The three feature sets given in
section 4.2.1, 4.2.2, and 4.2.3 as Fr, F4 and F; are defined in this section.
In each of these feature sets, there exist two types of features, mandatory

features, and optional features.
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4.3.2 Assumptions

The mandatory features are the constraints on the tool selection process. A

description of the constraints used in the model is as follows:

* Programming Language Support (L): For a tool to be selected, it
must support the programming language of the web application that
has to be tested. Mathematically, it can be described as L € Fr such
that L # 0. The value of L = 1 if it supports one programming lan-

guage and so on.

* Operating System (O): It is a support tool for working on a particular
operating system. Mathematically, it can be described as O € Fr such
that O # 0.

For the tool to be considered, the above two constraints should be

satisfied.

There is a list of optional variables provided in section 4.2.1, 4.2.2, and
4.2.3. For quantification, each optional feature is assigned a weight that will
assist in the total weight computation of the feature set. The weights of

different features are summarized in Table 4.2.

Mandatory Features —————If Exist
Tool Features FT Tensor Weight:
g 1
et
pum
w . . i Extract Weighted Slice
— —FAT Weight-» —C te Ti —>
5 Web App Features ensor Weig omposite Tensor: " and Identify Tool
8
Q.
O j
ICT Infrastructure .
Features —Fl Tensor Weight Define Composite
Tensor

Figure 4.1: Framework Design
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Table 4.1: Weight of Features in Different Feature Sets

Feature Weight Description
Operating Mode Number of supported operating modes. The minimum value is 1.
Data Confidentiality The support of data confidentiality features in the tool. Its value is zero

Integrity Impact

Standards
Web Server

Hosting OS

Architecture
Authentication
Session Management
Access Control
Cryptography
Comm. Security
Malicious Controls
File and Resources
Mobile

Web services
Configuration
Firewall

Encryptor

Domain Controller
IDS/TPS

if no support is provided else it is 1.

Weight is 1 if the impact is only on OS, 2 if OS and databases, and so
on.

Number of supported standards for vulnerability Assessment.

If the application is to be deployed, the number of web servers that
support the deployment of web applications. The minimum value is 1.
The operating system which supports the deployment of web applica-
tions. The minimum value is 1.

Levell = 1, Level2 = 2 and Level3 = 3.

Implemented = 1, Not implemented = 0

Implemented = 1, Not implemented = 0

Implemented = 1, Not implemented = 0

Implemented = 1, Not implemented = 0

Implemented = 1, Not implemented = 0

Implemented = 1, Not implemented = 0
Implemented = 1, Not implemented = 0
Implemented = 1, Not implemented = 0
Implemented = 1, Not implemented = 0
Exist =1, Absent =0
Exist =1, Absent =0
Exist =1, Absent =0
Exist =1, Absent =0

4.3.3 Framework with Mathematical Description

The CSRS framework integrates multiple related features in a single model

(figure 4.1). Before explaining the framework, the definitions of different

concepts are as follows:
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* Tensor: A tensor can be defined as a a multidimensional array (Kolda
& Bader, 2009). An Nth order tensor represents N dimensions. In this
CSRS framework, each dimension represents a feature set. A tensor
with one dimension is called a vector, with 2 dimensions is called a
matrix, and with 3 or more dimensions, it is called a composite or

higher-order tensor.

* Order of Tensor: The number of dimensions, also called modes, is
the order of the tensor. For a single dimension (vector), it is repre-
sented by a lowercase boldface letter i.e. a. Two-dimensional tensor
(matrix) is represented by uppercase boldface letter i.e. A and higher
order tensors are represented by boldface Euler letter i.e. <

* Tensor Index: The value of the feature inside a tensor is represented
by the index i.e.a; represents ith feature in a tensor. The feature in
two-dimensional tensor is represented by A;; and higher order indices

can be represented as »injk

* Slice: Slices are two-dimensional sections of tensor that fix one index
and the other two are variable. A horizontal tensor is shown in figure
4.2, denoted by ... More compactly, the ith slice of a sensor can be
represented by 2.

Each feature set is defined as a tensor with a weighted sum of the weights

of their features. The tensors (feature set) can be calculated as follows:

Fr ={i1,i2,i3....51}; 1Cn and min <i; < max 4.1)
Fa={j1,)2,i3....ji}; 1Cn and min< j; <max 4.2)
Fr={ki,ky,k3...k;}; 1Cn and min <ij < max (4.3)
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n

=1 .
o

Figure 4.2: Composite Tensor, R, is the resultant value

The resultant value of composite tensor, R, can be represented as Rj...
where the value from equations 4.1, 4.2 and 4.3 are calculated and fixed.
and R The lower (R, . ) and

The resultant value R, lies between Ry .
upper (R,, ) limit of the accumulative weight of features is set earlier based

min min

on the defined tool. The graphical representation is provided in figure 4.2

and mathematically given in equation 4.4.

R,.—R.. where R

Xmin

-R R 4.4)

Where R, is the calculated weight based on the weights of feature sets

that are represented as slice (Ry:::) in the 4-dimensional space.
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4.4 Implementation

The framework is implemented using open-source web applications. The
selection of these web applications is based on features provided in section

4.2.2. These applications are as follows:

* WebGoat is an insecure web application provided by OWASP for testing
server-side application vulnerabilities (OWASP-WEBGOAT,
2022).

* Mutillidae II is an open-source web application provided by OWASP.
It can be hosted on Linux and Windows platforms and can be de-ployed
on LAMP, WAMP, and XAMP web servers (OWASP-MULTIDAE, 2022).

* OWASP Juice Shop is one of the most used deliberately insecure ap-
plications developed by the OWASP community. It covers OWASP
top ten vulnerabilities along with many other security flaws found in
real-world applications (OWASP-JUICESHOP, 2022).

* Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web
application that is vulnerable and provides various levels of difficulty
with a relatively simple user interface (OWASP-DVWA, 2022).

* Codelab is a small web application built around Gruyere and con-
tains bugs such as cross-site scripting and cross-site request forgery,
information disclosure, denial of service, and remote code execution
(OWASP-CODELAB, 2022).

* CryptoPaste is a secure service developed to perform all encryption,
decryption, and data handling in the user’s browser (OWASP-
CRYPTOPASTE, 2022).
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* WackoPicko is a website that contains known vulnerabilities (OWASP-
WACKOPICKO, 2022).

4.4.1 Data Preparation

The selection of cyber assessment tools for dataset preparation is based on
operating modes, test type, data confidentiality, integrity impact, number
of branches, rating, and academic citations (section 4.2.1). The weight of
selected features of OWASP’s top 10 tools is provided in Table 4.3. For ICT
features, it is assumed that none of the infrastructures exist. The values are
given in Table 4.5.

Data from different tools, sample web applications, and infrastructure is
collected. The classification and labeling of data are performed based on the
CSRS framework. For each category, the dataset with similar properties is
assigned a similar class. An example of classification is given in Table 4.6.
The labels of different classes from each category are combined according
to the CSRS framework. A sample of a combination of the label of the
aggregated class is given in Table 4.7.

A basic combination of the features of selected web applications, tools,
and infrastructure is labeled. This labeled data is used to train and test
the machine learning classifiers. The performance of classifiers is further
improved by adding two more applications and increasing the number of
records for training the classifiers. Overall, the results are generated using
a combination of 54 features. However, a subset of features is also tested
for demonstrating the performance gains achieved by a larger number of

features.
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Table 4.2: Web Application Features and Weights

Features WebGoat Mutillidae Juice DVWA  Codelab CryptoPaste

II Shop WackoPicko

PL JS Ajax, Node]JS PHP,JS HTML, PHP PHP
IS, PHP Python

WS Apache LAMP, NodeJS LAMP, IIS LAMP, LAMP,
WAMP, WAMP, WAMP, WAMP,
XAMP XAMP XAMP XAMP

oS Linux LWM LW LWM W LW LW

Arc 2 1 1 3 1 2 2

Auth 0 0 0 0 0 1 |

SM 0 0 0 0 0 0 0

AC 0 0 0 0 0 0 0

MIH 0 0 0 0 0 0 0

Cryp 0 0 0 0 0 1 1

EHL 0 0 0 0 0 0 0

Dp 0 0 0 0 0 1 1

Comm O 0 0 0 0 1 1

MC 0 0 0 0 0 0 0

HSC 0 0 0 0 0 0 0

BL 0 0 0 0 0 0 0

FR 0 0 0 0 0 0 0

Mob 0 0 0 0 0 0 0

WSve 0 0 0 0 0 0 0

Conf 0 0 0 0 0 1 1
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Table 4.3: Tool Features and Weights

Tools

OM TT DC 1I

Branch Rate

AC

Attacks/Vul.

ZAP
(OWASP-ZAP,
2022)

Proxy

1 3 1 1

1900

9600

384

AUTH,INT

XRCross
(OWASP-
XRCross, 2022)

56

237

XSS,SSRE,CORS,SSTI,
IDOR, RCE,LFI,SQLI

NMap (OWASP-
NMAP, 2022)

1900

6500

25400

MON

Crypto  Detec-
tor (OWASP-
CRYPTO, 2022)

23

111

16

CRYP

sqlmap (OWASP-
SQLMAP, 2022)

4900

2390

2060

SQLI

SonarQube
(OWASP-
SONARQUBE,
2022)

2 2 1 1

1700

6900

3440

AUTH,INT,CRYP

W3af (OWASP-
W3AF, 2022)

2 2 0 0

1200

4000

998

SQLILXSS,0SC

Dependency
check (OWASP-

DependencyCheck,

2022)

959

4200

1350

OSD

thc-hydra
(OWASP-
THCHYDRA,
2022)

1500

6300

502

AUTH,CRYP

Commix

1 1 1 1

(OWASP-COMMIX,2022)

704

51

3300

798

OSC




Table 4.4: Attack and Definitions

Attack Definitions
AUTH Check for the process of authentication e.g. password
INT Check the data integrity e.g. hashing
XSS Cross-Site Scripting
SSRF Server-side request forgery
CORS Cross-Origin Resource Sharing
SSTI Server Side Template Injection
IDOR Insecure direct object references
RCE Remote Code Execution
LFI Local File Inclusion
SQLI SQL Injection
MON Monitoring Network Traffic
CRYP Presence of encryption techniques for data protection
OSC. Operating System Commanding i.e. gain access to OS
OSD. Operating System Dependencies i.e. updates or patches
Table 4.5: ICT Features and Weights
Feature Type Weight
Firewall (FW) H/W 0
Domain Controller (DC) S/W 0
Intrusion Detection& Prevention System (IDS) H/W 0
Encryptor (ENC) H/W 0
Table 4.6: Sample Labeling of Web Applications
APP JS PHP XAMP WAMP LINUX WIN ARC Label
WEBGOAT 1 0 1 0 0 1 2 B
MULTIDAEIl 1 1 1 1 1 1 1 A
JUICE SHOP 1 0 1 0 0 1 2 B
DVWA 1 1 1 1 1 1 1 A
CODELAB 1 0 0 1 1 0 1 C
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Table 4.7: Final Labeling of Each Class

Class WebApp Tool Infra Class Label

1 B A A BAA
2 A A A AAA
3 B A B BAB
1 B A A BAA
5 A B A ABA

4.4.2 Tool Selection for Implementation

Python (version 3.8) programming language is used to evaluate the results
generated from the data based on the given model. Python is selected as a
tool for different reasons (Sarkar, Bali, & Sharma, 2018; Raschka, Patterson,
& Nolet, 2020). One of the reasons is the availability of libraries for han-
dling large amounts of data collected from different sources. Another reason
is the ease of use which makes it the preferred choice of researchers. The li-
braries in Python are developed using lower-level static-type languages such
as Fortran, C/C++, and CUDA that make it performance efficient for scien-
tific computing and machine learning. Scikit-learn library (SciKit, 2022) is
used for applying different machine learning models and calculating metrics
values. It is an open-source library with the provision of simple and efficient

tools for predictive data analysis.

4.4.3 Metrics Selection

Three different metrics are used to determine the performance of classifiers

(Grandini, Bagli, & Visani, 2020). These metrics are as follows:

e Accuracy: It is defined as the number of correct predictions as com-

pared with a total number of predictions.
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CorrectPredictions
A = 4.5
ceuracy TotalPredictions (4.5)

* Precision: Precision is a measure of the ability of a classification

model to identify only the relevant data points.

L TruePositives
Precision = — — (4.6)
TruePositives + FalsePositives

* Recall: Recall is a measure of the ability of a model to find all the

relevant cases within a dataset.

TruePositives
Recall = 4.7
ecd TruePositives + FalseNegatives 47)

* F1-Score: F1 score is the harmonic mean of precision and recall. Just
as a caution, it’s not the arithmetic mean. If precision is 0 and recall
is 1, the f1 score will be 0, not 0.5.

Precision x Recall
F1-S8 =2 4.8
core * Precision + Recall (4.8)

4.5 Results

The data combined for feature values of web applications, tools, and infras-
tructure. Initially, basic values of tensors are considered resulting in 140
records. Results generated from 90/10 train/test split and 54 features for
training data are provided in Table 4.8. Moreover, the highest accuracy clas-
sifier is the RF which shows 97% prediction accuracy. Also, It is found that
DT showed 93% prediction accuracy, while SVM 89% and NB achieved
86% prediction accuracy, These results are reflected in the validation pro-

cess of the model and explained in section 4.6.
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Table 4.8: Initial Results with 54 Features

Classifier Accuracy Precision Recall F1-Score
Random Forest (RF) 97 97 97 97
Decision Tree (DT) 93 93 93 93
Naive Bayes (NB) 86 87 86 86
SVM(One-vs-Rest) 89 87 89 88
K-Nearest Neighbor (KNN) 60 57 60 52

4.5.1 Feature Optimization

Feature selection is the process of selecting of best available feature for pre-
dicting the output value. The presence of irrelevant features in the dataset
can decrease the performance of the classifiers (Cai, Luo, Wang, & Yang,
2018). The benefits of performing the feature selection process before train-

ing the models are as follows:

* Reduces Over-fitting: Removing redundant data removes the noise

from the data and improves classifier performance.

* Improves Accuracy: Removing misleading data improves the mod-

eling accuracy.

* Reduces Training Time: The training data volume is usually very

large. Reducing the number of features also decreases modeling time.

Statistical tests are used to find the most relevant features in the dataset.
The univariate algorithm is one of the algorithms for selecting the best fea-
tures. The Univariate algorithm is best suited for integer datasets and there-
fore, applicable to the dataset in the research. The scikit-learn library pro-
vides the SelectKBest class that can be used with a suite of different statis-
tical tests to select a specific number of features. The other feature selection

algorithms include Principle Component Analysis (PCA) (Karamizadeh,
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Abdullah, Manaf, Zamani, & Hooman, 2020) and Recursive Feature Elimi-
nation (RFE) (Ustebay, Turgut, & Aydin, 2018).

Applying the Univariate on the complete dataset resulted in figure 4.3.
The number of features was reduced from 53 to 46 where the results show
identical accuracy values with a lesser number of features as shown in Table
4.8.

Features Optimization (Univariate)
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Figure 4.3: Feature Optimization

4.6 Tool Prediction and Data Analysis

For the prediction of the suitable tool for the new web applications, three
different open-source web applications are selected. The features of these
web applications are fed into the trained machine-learning models. The pre-
diction accuracy of tools for all these applications (‘“Domain Mod”, 2022;
“Online-Invoicing-System”, 2022; OSPOS, 2022) is provided in Table 4.9.

The results show a comparison of the actual versus predicted class using
different machine learning classifiers. The features of the test applications
are extracted similarly to the features of the training application data set. All

the input features of test web applications are provided to the trained model
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Table 4.9: Tools Prediction (Actual class/Predicted class)

Classifiers Invoicing system OSPOS Domain Mod Accuracy (%)

NB 6/6 18/18 4/4 100

RF 6/6 18/18 4/4 100

DT 6/6 18/18 4/4 100
SVM 6/6 18/18 4/24 67
KNN 6/4 18/16 4/4 33

and the most relevant class of these applications is predicted. Naive Bayes,
Random Forest, and Decision Tree classifiers predicted the classes of input
data with 100% accuracy while SVM with one-versus-rest predicted 2 out
of 3 classes correctly. KNN could only predict 1 out of 3 classes correctly.
The reason for the high scores of the three classifiers (RF, DT, and NB) is
that the classifiers are designed to perform multi-class classification instead
of binary-class classification. On the other hand, an SVM works by project-
ing the data into a higher dimensional space and separating it into different
classes by using a single (or set of) hyper-planes. A single SVM does binary
classification and can differentiate between two classes, this is a limitation
in SVM classifiers and hence failed to detect any class correctly. There-
fore, the SVM variant of one-versus-rest is used for training and testing the
model. KNN classifier also could predict one class correctly while failing
for the other two. KNN has the limitation of handling a small set of data

records with imbalanced class distribution (Hasib et al., 2020).

4.7 Results Validation

The data from three different open-source web applications are used for tool
prediction in section 4.6. The tools defined for classes 4, 6, and 18 are pre-
dicted by the classifiers. These tools for class 4 and 6 is XRCross (OWASP-
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XRCross, 2022) and for class 18 Zap Proxy (OWASP-ZAP, 2022).

A complete environment for tool prediction is configured. This environ-
ment consists of a virtual machine hosted on the VMWare platform. Kali
Linux (Kali-Linux, 2022) is hosted as the operating system on the virtual
machine (VM) containing many pre-built tools for the security assessment
of web applications. The VM consists of 4GB of memory and 60 GB of
disk space. The quad-core processor is installed for better performance.

The network architecture was equivalent in all tests and completely un-
changed during the scanning process. Firewall configurations were set to
permit all network traffic. In addition, the testing tools were configured to
scan for services on all TCP ports and allowed vulnerability signatures.

The validators desired to check the first two applications (Online invoic-
ing system and Domain mod) for Cross-Site Scripting (XSS), Server Side
Request Forgery (SSRF), and SQL Injection attack. Corresponding features
of the web applications, desired attacks to test, and infrastructure mode are
passed to the tool predictor. The models predicted XRCross with 100%
accuracy with NB, RF, and DT algorithms. Both of the test applications
are tested on the Kali platform using XRCross and the results are shown in
figure 4.4.

The third testing application is OpenSourcePos (OSPOS) (OSPOS, 2022).
The desired tool should have authentication and integrity testing support.
The CSRF recommended ZAP Proxy (OWASP-ZAP, 2022) tool based on
inputs from the validators. The report generated by the ZAP proxy tool is
large enough. Therefore, a part of the report is shown in figure 4.5. The
results of scanning OSPOS using ZAP show that different types of attacks
that cover authentication and integrity check are reported with their number
and the risk level.

For comparing the performance of the recommender system, some cy-

ber assessment tools are randomly selected by the researcher. The selection
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XRCross is a Reconstruction, Scanner, and a tool for penetration/BugBounty testing.
This tool was built to test (XSS|SSRF|CORS|SSTI|IDOR|RCE|LFI|SQLI) vulnerabilitie:

Figure 4.4: XRCross Providing Support for XSS, SSRF, and SQL Injection Attacks

Alert type Risk Count
3
Absence of Anti-CSRF Tokens Medium i
(37.5%)
Content Security Policy (CSP) Header Not Set Medium (ll,, 5%)
. 7. » 1
Cookie Without Secure Flag Low (12.5%)
Cross-Domain JavaScript Source File Inclusion Low (100.0%)
3
Server Leaks Information via ""X-Powered-By'" HTTP Response Header Field(s) Low (37.5%)
S - : o : 15
X-Content-Type-Options Header Missing Low (187.5%)
&
Information Disclosure - Suspicious Comments Informational (ﬁ’?i 0%)
Re-examine Cache-control Directives Informational (lp 5%)
Total 8

Figure 4.5: Part of Scanning Report using ZAP Proxy

of these tools is based on popularity among the community. Three different
tools (nmap, nulcei, nikto) are configured. The output from these tools is
shown in figures 4.6, 4.8 and 4.7. Since the three test web applications (Ta-
ble 4.9) need authentication, authorization, XSS, SSRF, and SQL Injection
attacks to be detected and reported, the three randomly selected tools failed

to identify these vulnerabilities. This proves that the CSRS framework pro-
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vides improved performance accuracy in tool selection as compared with

manual selection.

)-[~/Desktop/Report]

nmap -h
Nmap 7.92 ( https://nmap.org )
Usage: nmap [Scan Type(s)] [Options] {target specification}
TARGET SPECIFICATION:
Can pass hostnames, IP addresses, networks, etc.
Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
-iL <inputfilename>: Input from list of hosts/networks
-iR <num hosts>: Choose random targets
--exclude <hosti[,host2][,host3], ...>: Exclude hosts/networks
--excludefile <exclude_file>: Exclude 1list from file
HOST DISCOVERY:
-sL: List Scan - simply list targets to scan
-sn: Ping Scan - disable port scan
-Pn: Treat all hosts as online -- skip host discovery
-PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or SCTP discovery to given ports
-PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
-PO[protocol list]: IP Protocol Ping
-n/-R: Never do DNS resolution/Always resolve [default: sometimes]
--dns-servers <servi[,serv2], ...>: Specify custom DNS servers
--system-dns: Use 0S's DNS resolver
--traceroute: Trace hop path to each host
SCAN TECHNIQUES:
-sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
-sU: UDP Scan
-sN/sF/sX: TCP Null, FIN, and Xmas scans
--scanflags <flags>: Customize TCP scan flags
-sI <zombie host[:probeport]>: Idle scan
-sY/sz: SCTP INIT/COOKIE-ECHO scans
-s0: IP protocol scan
-b <FTP relay host>: FTP bounce scan
PORT SPECIFICATION AND SCAN ORDER:
-p <port ranges>: Only scan specified ports
Ex: -p22; -pl-65535; -p U:53,111,137,T:21-25,80,139,8080,S:9
--exclude-ports <port ranges>: Exclude the specified ports from scanning
-F: Fast mode - Scan fewer ports than the default scan
-r: Scan ports consecutively - don't randomize
--top-ports <number>: Scan <number> most common ports
--port-ratio <ratio>: Scan ports more common than <ratio>
SERVICE/VERSION DETECTION:
-sV: Probe open ports to determine service/version info
--version-intensity <level>: Set from @ (light) to 9 (try all probes)

Figure 4.6: NMap Help

4.8 Summary

This chapter provides a comprehensive cyber assessment tool recommen-
dation system. The decision of tool selection is based on the available in-
put. These inputs are framed in the mathematical representation developed
based on the idea of Tensor. A combination of inputs defines a unique slice

of tensor that represents a unique tool. The data is gathered from multiple
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$ nikto -h
Option host requires an argument

-config+ Use this config file
-Display+ Turn on/off display outputs
-dbcheck check database and other key files for syntax errors
-Format+ save file (-o0) format
-Help Extended help information
-host+ target host/URL
-id+ Host authentication to use, format is id:pass or id:pass:realm
-list-plugins List all available plugins
-output+ Write output to this file
-nossl Disables using SSL
-no404 Disables 404 checks
-Plugins+ List of plugins to run (default: ALL)
-port+ Port to use (default 86)
-root+ Prepend root value to all requests, format is /directory
-ssl Force ssl mode on port
-Tuning+ Scan tuning
~timeout+ Timeout for requests (default 10 seconds)
-update Update databases and plugins from CIRT.net
-Version Print plugin and database versions
-vhost+ virtual host (for Host header)
+ requires a value

Note: This is the short help output. Use -H for full help text.

Figure 4.7: Nikto Help

emplate based vulnerabili ner focusing
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-store-resp store all request/respon: through nuclei to output directory

Figure 4.8: Nuclei Help

open-source web applications, tools, and infrastructure modes. This data is
combined based on the mathematical representation and different machine
learning models are trained on the dataset. Random Forest and Decision
Tree models showed the highest accuracy values. Features optimization is
applied to the dataset and the number of features is reduced from 54 to 46
while providing the same accuracy value as with a larger feature dataset.
Three different open-source web applications are tested using the models

are the most suitable tools are identified. The suitability of these tools for
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the cyber assessment of these applications is validated by hosting the appli-
cation on a test platform and executing these tools for desired attacks and

vulnerabilities. The results provided by these tools show 100% validation.
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Chapter 5

Conclusion and Recommendations

5.1 Introduction

Security of software applications is one of the key requirements during and
after software development. Due to the very large number of technologies
and variety of programming languages, it is challenging for developers and
security analysts to find suitable security assessment tools in the given con-
text. The decision of tool selection is dependent on many variables that are
difficult to handle manually. Thus, the research work attempts to answer the

research question of finding a suitable security assessment tool.

5.2 Discussion

The research work 1s related to finding s uitable s ecurity testing tools for
software applications. Software developers face the challenge of finding the

appropriate tool during software development and security analysis using




the tool for statics analysis and dynamic analysis of the applications. In this
research, a security tool recommendation system is developed. This system
integrates different feature sets using the concepts of tensors from mathe-
matics. The data is collected from different vulnerable web applications,
security assessment tools, and infrastructure modes. This data is labeled
and a unique class is assigned to the relevant combination.

This data is fed into different machine learning classifiers and the ma-
chine learning models are trained with the input dataset. After this, feature
optimization is performed to find the best suitable and minimal set of re-
lated features that provide similar or better prediction accuracy with a more
efficient execution time. This step reduced the number of features from 54
to 46. The data of three new and different web applications are used to
predict the suitable tool for security testing of the web applications. It is
identified that Dissuasion Tree, Random Forest, and Naive Bayes classifiers
provide 100 percent accuracy in tool prediction while other classifiers show
relatively fewer accuracy values. The accuracy of prediction is dependent
on multiple factors. One such factor is the size of the dataset used to train
the model. Since the dataset is synthesized with a limited number of fea-
ture sets and only fewer combinations are applied to train the models, the

performance of models can be improved with extended datasets.

5.3 Limitations and Future Work

The research work is initiated with the research question of finding a cyber
assessment tool recommendation system. Based on a mathematical repre-
sentation and machine learning classification, a solution is proposed and
validated. However, there are certain limitations exist in this research that

can be addressed in future works. The limitations are as follows:

» Three feature sets are given as input to the tensor model. Implement-
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ing a larger number of feature sets in a larger study would be helpful

to analyse the generalization of the mathematical representation.

» The dataset used for training the machine learning classifiers is pre-
pared with a limited number of open-source web applications, cyber
assessment tools, and infrastructure modes. It is recommended to use
a larger dataset containing a large number of records that will improve

classification accuracy.

* Only five (05) machine learning classifiers are tested for training and
testing of data for tool prediction. There is a long list of classifiers
recently reported in the literature. Training and testing using these

classifiers may improve the performance values.

5.4 Conclusion

This research covers the broad topic of cyber security assessment in exist-
ing web applications. The selection of suitable tools for cyber assessment
remains challenging for software developers and penetration testers. This
challenge becomes manifold when dealing with programs developed using
many different languages and deployed on a variety of deployment plat-
forms. The research provides a comprehensive literature review of different
types of cyber attacks and vulnerabilities that exist in the source code and
deployed applications. A mathematical representation based on the Ten-
sors combination is proposed in which different features are used as input
parameters. The data of different applications, tools, and infrastructure fea-
tures is prepared and given as input to multiple machine learning models.
The results from these models are optimized and then the suitable tools are
predicted using these trained models. The prediction results generated by

these models provided a promising accuracy value of 97%. However, fu-
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ture research is required to get better results with larger datasets, with many

machine learning classifiers, and with multi-dimensional feature sets.
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