Document
Designing of dimethylfluorene-based hole transport materials for high-performance organic/perovskite solar cells
Linked Agent
Title of Periodical
Solar Energy
Country of Publication
Kingdom of Bahrain
Place Published
Sakhir, Bahrain
Publisher
University of Bahrain
Date Issued
2023
Language
English
Subject
English Abstract
ABSTRACT :
In this study, we present the design of five new hole-transporting materials (ZM1, ZM2, ZM3, ZM4, and ZM5) based on dimethylfluorene through end-capped acceptors via thiophene linkers. We aimed to enhance the photovoltaic properties of hole-transporting materials (HTMs) for potential use in high-efficiency perovskite solar cells (PSCs). We employed density functional theory (DFT) based calculations to investigate the electronic and photovoltaic properties of the designed HTMs. Our results demonstrated that designed HTMs possess superior planarity, deeper HOMOs energies, and high solubility with small energy band gap (Eg) compared to the reference (ZR) and Spiro-OMeTAD HTMs, leading hole extraction and efficacious solution processing properties. This effectively drives the transport of holes from the perovskite layer with high open-circuit voltages (1.15 V to 1.25 V). The results of the hole charge transfer integral of the designed HTMs (0.244 eV to 0.346 eV) indicate their improved hole mobility rate for PSCs. Additionally, all designed HTMs exhibited superior anticipated power conversion efficiency (25.87% to 28.33%) with a higher fill factor (0.8948 to 0.9014) compared to the reference molecule (13.22%). Our findings suggested that ZM1-ZM5 molecules are advantageous HTMs for the fabrication of high-performance PSCs, which may have the potential for future commercial use in the solar industry.
Member of
Identifier
https://digitalrepository.uob.edu.bh/id/5672f0b7-3813-42a8-a896-b2b0e4e69fd6
Same Subject